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Abstract

Electrical signaling is a fundamental mechanism for integrating environmental stimuli and coordinating responses in living organ-
isms. While extensively studied in animals and plants, the role of electrical signaling in fungi remains a largely underexplored field.
Early studies suggested that filamentous fungi generate action potential-like signals and electrical currents at hyphal tips, yet their
function in intracellular communication remained unclear. Renewed interest in fungal electrical activity has fueled developments
such as the hypothesis that mycorrhizal networks facilitate electrical communication between plants and the emerging field of fungal-
based electronic materials. Given their continuous plasma membrane, specialized septal pores, and insulating cell wall structures, fil-
amentous fungi possess architectural features that could support electrical signaling over long distances. However, studying electrical
phenomena in fungal networks presents unique challenges due to the microscopic dimensions of hyphae, the structural complexity
of highly modular mycelial networks, and the limitations of traditional electrophysiological methods. This review synthesizes current
evidence for electrical signaling in filamentous fungi, evaluates methodological approaches, and highlights experimental challenges.
By addressing these challenges and identifying best practices, we aim to advance research in this field and provide a foundation for

future studies exploring the role of electrical signaling in fungal biology.

Keywords: electrical signaling; modularity; filamentous fungi; ion channels; mycelium

Introduction

For all living organisms, sensing environmental stimuli and inte-
grating this information to generate a response are fundamental
processes for survival. There are several mechanisms that organ-
isms use for this coordination, including electrical signaling. Elec-
trical signaling constitutes a rapid and reliable way of intra- and
intercellular communication (Katz 1961, Keener and Sneyd 2009).

Speculation about the importance of electricity in the func-
tioning of a living organism dates back to 1780, following Luigi
Galvani’s seminal observation of muscle contraction in response
to electrical currents (Piccolino 1998). Since this discovery, the
connection between electricity and biology has been extensively
investigated (Piccolino 1998, Canales et al. 2018). The role of elec-
tricity in cellular communication has been primarily investigated
in animals, in particular mammals, given its importance for the
functioning of the nervous system. In animal models, the trans-
mission of an electrical signal between cells is driven by action
potentials that result from specific stimuli. Briefly, action poten-
tials are defined as a response to changes in voltage across the
cell membrane, which result from ion (e.g. Na*, Ca?*, or K*) redis-
tribution across the membrane. Depolarization that causes the
cell to reach a certain voltage threshold generates a “spike” that
is characteristic of these action potentials, which can then

propagate along a cell and pass between adjacent cells
(Hausser 2000).

Electrical signaling is now recognized to be ubiquitous across
all domains of life, from bacteria to animals and plants (Piccolino
1998, Brenner et al. 2006, Prindle et al. 2015). However, the mech-
anisms and outcomes of electrical signaling vary across these do-
mains. For instance, processes mediated by electrical signaling for
cell-to-cell communication include the excitation of muscles by
nerves in animals (Piccolino 1998), the rapid closing of stomata
or leaf traps in Dionaea muscipula (the Venus flytrap plant) (Bohm
et al. 2016, Blatt 2024), and tissue regeneration and organization
in plants (Nuccitelli 1988, 2003, Brenner et al. 2006, Clarke et al.
2013, Beagle and Lockless 2015, Prindle et al. 2015, Levin et al.
2017, Szechynska-Hebda et al. 2017, McLaughlin and Levin 2018)
and animals (Harris 2021). Unicellular organisms, such as bacteria
found in biofilms, also utilize electrical signaling to aid in commu-
nity coordination and response to environmental changes (Prindle
et al. 2015).

In fungi, diverse electrophysiological behaviors, including the
generation of action potential-like signals (Olsson and Hansson
1995) or the generation of currents in the hyphal tips (Stump et al.
1980, Gow 1984, Horwitz et al. 1984) were shown in studies con-
ducted in the late 20th century. However, the role of electrical sig-
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naling as a mechanism of intracellular communication was not
irrefutably shown in these early studies, and progress in the field
stalled. Recent studies have sparked renewed interest in the topic,
particularly in relation to the importance of filamentous fungi in
soil ecosystems (Hunter 2023). The hypothesis of a “Wood Wide
Web” considers plants being connected to each other via the com-
mon mycorrhizal network (CMN) (Simard and Durall 2011) and
being able to communicate with each other using electrical sig-
naling. This hypothesis is partly based on measurements of elec-
trical currents in the plant-fungus interaction zone in roots, as
well as the induction of changes in transmembrane potentials in
germ tubes of mycorrhizal fungi exposed to plant root extracts
(Berbara et al. 1995, Ayling et al. 2000). Although this highlights the
potential importance of fungal electrical signaling at the level of
ecosystems, the existence of the CMN and its role in interspecies
communication is still highly debated (Karst et al. 2023). On the
other hand, the proposed use of fungal mycelium for the gen-
eration of innovative materials with electric conductive proper-
ties such as sensors or so-called fungal computers (Li et al. 2022,
Meyer 2022, Jo et al. 2023, Mayne et al. 2023, Hyde et al. 2024, Jones
et al. 2024) has also contributed to the renewed interest in the
area.

Fungi are a clade of eukaryotic microorganisms with remark-
ably diverse physiologies and metabolisms and can perform nu-
merous ecological functions. Morphologically, fungi range from
unicellular yeast to multicellular forms such as molds and mush-
rooms (James et al. 2020). Regardless of the apparent morpholog-
ical complexity of one or the other growth mode, yeast and fila-
mentous fungi are important models to study fundamental pro-
cesses of eukaryotic cells (van der Klei and Veenhuis 2006). More-
over, filamentous fungi have been used by humankind as versatile
and robust cell factories, but to exploit their full potential we need
to overcome the limited knowledge of fungal biology (Meyer et al.
2016).

Multicellular filamentous fungi are tip growing organisms
showing a radial three-dimensional growth of tube-like struc-
tures called hyphae. This morphology can be considered ideally
suited for electrical signaling as hyphae contain a continuous
plasma membrane and cell wall. Furthermore, the cell wall can
be coated with hydrophobins (i.e. surface active amphiphile pro-
teins) (Wosten and de Vocht 2000, Linder et al. 2005, Kulkarni et
al. 2017) and other compounds such as melanin. These structural
components and the cell wall polysaccharides could have a po-
tential role in insulating the interior of the fungal cell, prevent-
ing electrical leaking, a function carried out by myelin in neu-
rons (Morell and Quarles 1999). Filamentous fungi from basal
clades (i.e. Mucoromycota) often have coenocytic (continuous cy-
toplasm) hyphae, but higher fungi (Dikarya) utilize septal pores
to compartmentalize their hyphae continuum (Rayner et al. 1995,
Fricker et al. 2007, Harris 2008). These pores regulate the exchange
and transport of nutrients, macromolecules, organelles, and play
a role in cellular differentiation and reproduction (Fischer 1999,
Abadeh and Lew 2013). Septa can be closed by plugging to prevent
loss of cytoplasm content after hyphal damage (Markham 1994,
Steinbergetal. 2017), or in response to deleterious biological inter-
actions such as mycoparasitism (Gimeno et al. 2021). This means
that the cytoplasm in Dikarya is not always continuous and the
propagation of chemical signals via cytoplasmic bulk flow can be
inefficient. Conversely, plasma membrane continuity and, thus,
electrical signaling, are not affected by septal pore plugging (Gow
and Morris 1995, Roper and Seminara 2019). In this way, electri-
cal signaling could still allow for communication between distant

hyphae within a mycelial network, even during times of distress
or physical disruption.

A fascinating feature of multicellular fungi is the formation of
a mycelium, consisting of a network of interconnected hyphae
that can grow, branch, fuse, and adapt dynamically to environ-
mental conditions (Fricker et al. 2017). The formation of such net-
works allows filamentous fungi to improve nutrient acquisition
and translocation (Rayner et al. 1995, Harris 2008, Fricker et al.
2017, Fischer and Glass 2019). The mycelial network is a highly
dynamic structure and its plasticity in space and time allows
fungi to cope with uneven or ephemeral distribution of resources
in complex environments such as soils (Hutchings et al. 2000).
The mycelium is inherently modular and provides an architec-
ture that results in the adaptability needed to exploit resources
and thrive in heterogeneous environments (Fig. 1). Each hyphal
segment functions semiindependently, enabling the organism to
allocate resources flexibly and respond locally to stimuli such as
nutrient availability or stress. Experiments performed with wood
rotting fungi have shown that network structure can change very
rapidly when new resources are discovered by a foraging mycelial
front (Wood et al. 2006). The speed and extent of the reorganiza-
tion depend not only on the foraging strategy, but also on the size
and quality of the new resource, and the presence of competitors
(Wood et al. 2006). This observed capability to rapidly reorganize
suggests the existence of one or several systems to integrate in-
formation from different areas in a mycelial network.

Direct uptake and intrahyphal nutrient diffusion are consid-
ered sufficient to sustain short-range local growth when resources
are abundant (Olsson 2001) or in slow-growing fungal species (Ols-
son and Jennings 1991a, b, Darrah et al. 2006, Ashford and All-
away 2007, Fricker et al. 2017). In other conditions, multiple trans-
port pathways (Jennings 1987, Cairney 1992, Heaton et al. 2012) or
pressure-driven delocalization of resources have been suggested
as mechanisms behind nutrient redistribution (Lew 2011). The
cost of these strategies is expected to increase the longer the dis-
tance (i.e. meters) to be covered in the mycelial network (Fricker et
al. 2017). Passive movement with the mass flow resulting from the
influx-efflux of water could provide a less costly alternative. How-
ever, this creates a risk of excessive evaporation given the high sur-
face area resulting from an extensive mycelial network (Fricker
et al. 2017). Moreover, passive movement cannot explain the in-
versed flux of nutrients observed in fungal structures such as
fungal cords (Olsson and Gray 1998), which are specialized struc-
tures made of densely packed hyphae used for transport of nu-
trients and water over long distances (Townsend 1954). Inversed
cytoplasmic movement has also been observed in other special-
ized hyphae such as trunk hyphae (Schmieder et al. 2019). Recent
work mapped and observed bidirectional flow in almost all hy-
phae of Rhizophagus irregularis A5, R. irregularis C2, and Rhizophagus
aggregatum. The fungal partners exchange nutrients with roots
and thus bidirectional flow is essential to connecting the forag-
ing point to the plant host. A higher flow speed in larger hyphae
suggest the control of speed by the fungus to increase the volume
exchanged in larger and more direct trunk hyphae (Oyarte Galvez
et al. 2025). Pressure-driven delocalization is also difficult to rec-
oncile with behaviors performed in distant areas of the mycelium
(Roper and Seminara 2019). These examples suggest that filamen-
tous fungi need a mechanism to control cytoplasmic flow, espe-
cially when the mycelium is extended and/or when it acts as an
exchange channel between two points. A larger volume from a
higher number of auxiliary hyphae connected to larger trunk hy-
phae could explain an increased flow. However, this requires a fine
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Figure 1. Organization of a mycelial network. In soils, the mycelium needs to integrate a multitude of stimuli to coordinate the reorganization of its
hyphal network. This allows to improve nutrient acquisition and exploration and colonization of complex habitats. This decentralized growth strategy
underpins many unique features of fungal biology, including interactions with other organisms. Studying how mycelial networks integrate
information across multiple spatial and temporal scales presents unique challenges, including the high spatial heterogeneity of actively growing
structures such as hyphal tips, where electrical currents are known to be produced. Moreover, morphological elements such as septal pores, as well as
the structure and composition of the cell, appear ideally suited for electrical signaling.

control of network organization, and there is no data available
for the moment that supports this hypothesis. All of the above
pledges in favor of a different process for long-distance network
coordination as well as for coordinating the modular behavior of
the mycelial network.

In other organisms such as animals, integration and response
to environmental stimuli is coordinated by the nervous system,
which uses electrical signaling for fast responses. However, the
use of electrical signaling for communication and coordination of
responses to environmental stimuli in plants shows that a central
nervous system is not a requirement. In plants, electrical signal-
ing regulates slower responses (e.g. response time in minutes to
hours) primarily for adapting to environmental stresses and reg-
ulating physiological processes, but it is also used in faster pro-
cesses such as the closing of the Venus’ fly trap or mimosa leaves.
Electrical signaling in plants is mediated by the production of ac-
tion potentials with the same key characteristics of those in an-
imals, but with important differences in the molecular compo-
nents of depolarization. While Na* ions are important in the gen-
eration of action potentials in animals, plants are thought to re-
quire Ca?* and Cl~, probably due to the high toxicity of sodium.
Resting membrane potentials for plants are around —120 mV
compared to the —70 mV for animals. Lastly, the speed of signal
propagation in plants is typically slower than that in animals (for
instance, 5-25 cm s~! in the Venus flytrap versus 0.1-100 m s~*
in nerves) (Lee and Calvo 2023). In addition, electrical signaling
in plants also includes the generation of variation and systemic
potentials (Zimmermann et al. 2009, Vodeneev et al. 2015). Varia-
tion potentials are long-distance intercellular electrical signals to
coordinate functional responses under stressors. Like in the case
of action potentials, variation potentials are created by transient
membrane depolarization, although the dynamics of membrane
potential changes are different (Vodeneev et al. 2015). Similar to

plants, fungi are sessile organisms that cannot escape stressors
such as predators or nutrient scarcity, but must adapt locally. Ac-
cordingly, electrical signaling such as variation and systemic po-
tentials could be some of the mechanisms behind the coordinated
behavior of mycelial networks (Vodeneev et al. 2015).

The goal of this review is to provide an overview of the cur-
rent evidence for the existence of electrical signaling in filamen-
tous fungi and the challenges of applying traditional electrophys-
iological techniques for this specific type of microorganism. These
challenges are not only due to the small dimensions of individual
hyphae and the differentiation of cells (e.g. hyphal tip), but also to
the spatial complexity of modular mycelial networks. In the sec-
ond part of this review, we present a critical assessment of current
methods and expose experimental caveats that we have encoun-
tered while trying to obtain novel evidence for electrical signaling
in filamentous fungi. The objective of this second part is to help
other research groups to avoid costly pitfalls and to encourage fu-
ture studies in the area.

Electrophysiological phenomena in fungi

In electrophysiology, one distinguishes two kinds of measure-
ments, voltage and current. Voltage, or electrical potential, cor-
responds to a measure of the difference in charge between two
points in an electrical field. In biological systems, this is often the
membrane potential created by the differences in ion concentra-
tions inside and outside of a cell (i.e. across membranes) (Kamada
1934, Curtis and Cole 1942). Monitoring changes in the membrane
potential allows for the characterization of the process of depolar-
ization and repolarization that occur during an action potential
(Curtis and Cole 1942). In contrast, current is the flow of electri-
cal charge per unit of time (per second). In biological systems, this
can correspond to the movement of ions across membranes (e.g.
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through ion channels) or, in some cases, charge conduction along
cells via electrons, ions, or specialized structures such as those
observed in cable bacteria (Boschker et al. 2021). Overall, the stud-
les published so far suggest that the currents transmitted along
fungal hyphae are either of low intensity (uA cm~?) (Gow and Mor-
ris 1995) or low voltage (nV to pV), resulting in values lower than
those that have been observed along animal neurons that are in
the mV range (Olsson and Hansson 1995). Accordingly, a record-
ing method needs to be not only adapted to the magnitude of cur-
rents to be measured, but it also requires spatial awareness as to
where to perform the recordings given the potential complexity
and diversity of mycelial networks. For instance, multiple studies
have demonstrated that specific areas of the mycelium are active
upon predator attack (Schmieder et al. 2019) or during the nu-
tritional exchange with plant hosts in mycorrhizal fungi (Oyarte
Galvez et al. 2025). The latter study also showed highly dynamic
network remodeling. Accordingly, it can be supposed that electri-
cal signaling will not occur equally in all areas of the mycelial
network, nor that all hyphae or even hyphal segments are equally
involved in the conduction of the signal. Thus, it is essential to
understand and control where and what should be measured to
avoid the creation or measurement of artifacts or to generalize
the behavior from single point observations to the entire modular
organism as in the case of filamentous fungi. In this section, we
will first present studies focusing on measuring electrical poten-
tial in fungi, and then address the existence of ion channels in this
microbial group. An overall summary of relevant studies related
to measuring electrical signaling and their findings is presented
chronologically in Table 1. However, in the next sections, the dis-
cussion of the results was organized accordingly to the approach
used or the electrophysiological process investigated.

Electrical measurements in microscopic fungal structures

The study of electrical signaling in microscopic fungal struc-
tures has been difficult due to technical challenges, particularly
in recording internal currents in hyphae. Two of the most tradi-
tional methods to record action potentials are the voltage or cur-
rent clamp. The patch clamp method, introduced by Neher and
Sakmann in 1974 (Neher and Sakmann 1976) using frog muscle
fibers, enabled the direct measurement of ion channel activity.
This method involves forming a high-resistance seal between a
glass pipette and a small patch of the cell membrane, allowing
for the measurement of membrane potential and ionic currents
with high precision (Neher and Sakmann 1992). Traditional patch-
clamp techniques are reliable and widely applied in biological sys-
tems (Hamill et al. 1981, Zhao et al. 2008), but face limitations in
fungal hyphae mainly due to their size (2-10 pm), but also to the
presence of a cell wall and its associated proteins (Martinac et al.
2008). Accordingly, measurements with this approach have been
mainly conducted in protoplasts obtained through enzymatic di-
gestion on fungi-like cells of the oomycete Saprolegnia ferax (Garrill
et al. 1992, 1993, Garrill and Davies 1994), or by laser ablation of
the cell wall in Aspergillus niger (Roberts et al. 1997). Very recently,
a novel method was utilized for nano-surgical ablation of the cell
wall across multiple locations, which provides a new approach for
protoplast generation in living hyphae that can be amenable to fu-
ture patch-clamp studies of ion channels and their properties in
filamentous fungi (Paji¢ et al. 2024).

In spite of all the challenges, electrophysiological behaviors
have been studied since the late 20th century in several fungal
species (Gow 1984, Harold et al. 1985, Gow and Morris 1995). The
first studies were based on the use of intracellular glass micro-
electrodes. For this, sharp electrodes are used to penetrate the cell

membrane, allowing researchers to record voltage (differential be-
tween two points in the colony or between the inside and outside
of the cell membrane). This type of approach has been particularly
useful for measuring the resting membrane potential and action
potentials in neurons, providing insights into cellular excitability
(Brette and Destexhe ). The method can be applied to several types
of microorganisms, and the first intracellular electrical recording
ever made was the measurement of the resting membrane po-
tential in Paramecium (Takeo Kamada 1934). The first example of
their use in fungi was the detection of electrical currents in the
apex of growing hyphae in Neurospora crassa. Differences in mem-
brane potential between the colony border (i.e. apex region) and
the area toward the center of the colony were linked to polarized
growth (Slayman and Slayman 1962). Glass microelectrodes in-
serted with micromanipulators to penetrate the fungal cell wall
were also used for recording spontaneous voltage fluctuations re-
sembling action potentials in fungi (Slayman et al. 1976, Olsson
and Hansson 1995). Conventional glass microelectrodes were di-
rectly inserted into the hyphae of N. crassa. The spontaneous ac-
tion potential-like behavior in this species involved depolariza-
tion and repolarization of the membrane with an apparent re-
fractory period, similar to action potentials (Slayman et al. 1976).
In another study with cords of Armillaria bulbosa, similar action
potential-like signals were induced when the growing mycelium
contacted a piece of beech wood that was initially placed 1-2 cm
away from the colony (Olsson and Hansson 1995). The signals
recorded in cords were measured using a glass microelectrode
that was inserted among the mycelial strands, with a reference
electrode inserted into the agar medium. Pleurotus ostreatus was
tested with the same approach, and similar results (i.e. recording
of action potential-like signals) were obtained in so-called “looser”
tissue located at the edges of the colony. In both cases, the rate of
spontaneous firing was very similar (frequency of 0.5-5 Hz and
amplitude of 5-50 mV) to that recorded in animal sensory sys-
tems. However, this invasive approach could have altered fungal
behavior, potentially compromising the validity of the data. In ad-
dition, as shown by this pioneering work, this approach cannot be
generalized to all cell types of filamentous fungi, as the record-
ings were unsuccessful with undifferentiated hyphae (Olsson and
Hansson 1995).

Further studies were possible thanks to the development of
extracellular vibrating electrodes that allow the extracellular
recording of hyphae-generated currents (Jaffe and Nuccitelli 1974,
Nuccitelli 1990). Vibrating microelectrodes are used primarily
to measure extracellular ion flow and electric fields. This tech-
nique involves the vibration of a microelectrode at a fixed fre-
quency, which helps to detect small changes in voltage related
to ionic movement in tissues. This approach is particularly use-
ful in studying bioelectric fields generated by excitable tissues
such as the heart and nervous system in a less invasive man-
ner (Dorn and Weisenseel 1982, Nuccitelli 1990). Vibrating micro-
electrodes have been employed in various studies to measure cur-
rents around growing hyphal tips, during sporulation, and in re-
sponse to light stimuli (Stump et al. 1980, Gow 1984, Horwitz et
al. 1984). The first studies in fungi were inspired by the measure-
ments of a positive current entering the rhizoid and leaving by
the thallus in the aquatic fungus Blastocladiella emersonii, in which
the current was believed to be carried by protons (Stump et al.
1980). Similar studies with the oomycete Achyla showed that cur-
rents were driven by a proton flow (inwards in the tip and out-
wards in the region away from it and toward the center of the
colony) (Armbruster and Weisenseel 1983, Kropf et al. 1984). In
Achlya, the use of intracellular microelectrodes afterwards helped
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to demonstrate that respiratory inhibitors produce the rapid de-
polarization of the membrane, indicating that membrane poten-
tial is governed by an electrogenic ion pump (Kropf 1986). The ini-
tial work with vibrating microelectrodes in B. emersonii and Achlya
was later replicated with filamentous fungi including N. crassa,
Aspergillus nidulans, Schizophyllum commune, Mucor mucedo, and Co-
prinopsis cinerea, all of which generated electrical currents (varying
between 0.05 and 0.60 pA cm~?) around their hyphal tips (Gow
1984). Furthermore, the formation of light-stimulated conidia in
Trichoderma harzianum was also proposed to be the result of electri-
cal currents of different intensities applied along the hyphae. The
modification of the currents in the membrane (outwards current
in the sites stimulated by the light) was recorded 1-2 h after pho-
toinduction (Horwitz et al. 1984). Similar experiments performed
with microelectrodes and using blue light as stimulus suggested
light-induced responses in N. crassa. The response in this case may
not occur in every cell but the signal can be transmitted to the
adjacent cells by means of electrical or chemical communication
(Potapova et al. 1984).

The generation of inward electrical currents in the apex was
initially linked to the regulation of the direction of growth of hy-
phae. The proposed model suggested that currents in the apex
helped the directional growth of hyphae by providing a mecha-
nism (i.e. establishing intracellular electrophoretic fields) explain-
ing the movement of vesicles from the hyphal tip to the apex
(Gow 1984). Accordingly, a study applying an external electric field
showed that sites of germ tube formation and branching, the di-
rection of hyphal extension, and the frequency of branching and
germination can be affected by electric fields in some filamentous
fungi including N. crassa, A. nidulans, M. mucedo, and T. harzianum
(McGillivray and Gow 1986). However, another study measuring
electrical currents with vibrating electrodes using the aquatic
fungus Allomyces macrogynus, which produces true hyphae and
rhizoids, presupposed a different behavior given its unique mech-
anism of cell wall deposition. Consequently, measurements with
extracellular vibrating electrodes showed outward positive elec-
trical currents around hyphae regardless of their growth status
(extending or nonextending). In contrast, inward currents were
detected in the rhizoids. The authors also did not find evidence
indicating the role of calcium, while sites of nutrient uptake were
correlated with inward electrical currents (Youatt et al. 1988). A
follow-up study including A. macrogynus together with the soil
fungus Basidiobolus ranarum, and the oomycete Achyla bisexualis,
showed thatinward electrical currents reflect local nutrient trans-
port and not local cell growth, by linking together proton and nu-
trient symport (Gow 1989). Overall, these studies suggest that the
role of electric currents on the hyphal tips in the redirection of
growth cannot be generalized (Potapova 2012).

The use of vibrating microelectrodes is not without drawbacks.
They are difficult to build and to operate correctly. Furthermore,
the vibrating nature of the electrode can disturb biological pro-
cesses (Jaffe and Nuccitelli 1974). Moreover, as the recordings are
done extracellularly, they are often susceptible to background
noise interference, thus requiring the inclusion of carefully de-
signed controls and the use of systems such as a Faraday cage,
which has been included in some but not all studies published so
far. Recording signals in single hyphae does not only pose a prob-
lem due to the small size of individual hyphae relative to the elec-
trode (usually on the order of 5 pm), but also by the complex orga-
nization of the fungal mycelium. When grown on a solid substrate
such as an agar-based medium, it is virtually impossible to study
individual hyphae, which can differ in their signaling activity, due
to factors such as age or conditions of the local environment. This
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has been clearly shown, for instance, in experiments investigating
the coordination of the response of C. cinerea to attacks by fun-
givorous nematodes. In this case, only specialized hyphae (called
trunk hyphae) were shown to propagate chemical defense signals,
while no activity was observed for a large fraction of the rest of the
mycelial network (Schmieder et al. 2019).

The initial discovery of endogenous electrical fields at the hy-
phal tips prompted follow-up studies evaluating the effect of ex-
ternal electrical fields on the polarity of fungal growth as men-
tioned previously (McGillivray and Gow 1986). Fungi have shown
both galvanotropic behavior, i.e. change of the direction of growth
in response to an electrical field (Lever et al. 1994, Brand and Gow
2009) and electrotactic behaviors, i.e. active movement of a motile
cell (e.g. zoospores) in response to an electrical field (Morris and
Gow 1993, Swafford and Oakley 2018). The model organism Can-
dida albicans has been fundamental to understanding the mecha-
nism by which electrical fields affect the direction of growth. Ger-
mination experiments have shown that electrical fields modify
the position of germ tubes likely by inducing the influx of Ca%*
via the voltage-gated channel Cch1. This is supported by deletion
of Cch1 orin medium containing a pharmacological Ca®*-channel
blocker (i.e. BAPTA), which resulted in a severe attenuation of gal-
vanotropism. Reciprocally, the response was enhanced in media
with high extracellular Ca®* concentration (Brand et al. 2007). The
galvanotropic response of hyphae of A. nidulans, N. crassa, and C.
cinerea was pH- and Ca®*-dependent, suggesting also the implica-
tion of voltage-gated channels (Lever et al. 1994), as in the case of
C. albicans.

Electrotaxis of zoospores of fungi-like oomycetes such as
Pythium was triggered by electric fields of the same magnitude as
those measured in plant roots (Morris and Gow 1993). Likewise,
electrotaxis could be among the sensory mechanisms directing
the movement of motile zoospores in zoosporic fungi. Wounding
is known to generate an endogenous electric field in both plants
and animals. In animals, this endogenous electric field serves to
guide the movement of epithelial cells and other cells involved
in wound healing to the wound site. In plants, these currents can
lead tolocal hydraulic pressure and to a systemic potential trough
the phloem to activate defenses (Tyler 2017). In accordance with
the existence of this endogenous electric fields in their potential
hosts, electrotaxis could participate in the localization of a suit-
able site for plant infection such as wounded areas. Zoosporic
fungi are typically characterized as saprobes or parasites of both
plant and animal hosts. Their zoospores have a finite amount of
endogenous energy reserves and must locate quickly a suitable
substrate or host. During dispersal of the zoosporic life stage, in-
terpretation of environmental cues is critical for the survival and
success of the future colony, and enhanced germination has been
shown in weak electric fields (Moratto et al. 2023). Recently, an
experimental system has been developed using zoospores of the
saprotroph Allomyces arbusculus. This system demonstrated the
combined role of photo and chemotaxis as part of a multisen-
sory system acting during dispersal and settlement of zoospores
(Swafford and Oakley 2018). This model could be used in future
studies to evaluate the role of characteristic endogenous elec-
tric fields of a root or epidermis wounds (Jia et al. 2021) in guid-
ing zoospore movement. The mechanisms explaining electrotaxis
have not been elucidated in detail, but as in the case of galvan-
otropism, earlier studies suggest that this electro-guided move-
ment is associated with Ca?* transport across the membrane
(Morris and Gow 1993).

Moreover, fungi have been found to display thigmotropism
(Jaffe et al. 2002, Stephenson et al. 2014), which is a direc-
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tional growth movement in response to a touch stimulus. Thig-
motropism is modulated by electric signaling in other organisms
such as plants and animals (Sibaoka 1966, Jaffe et al. 2002). In C.
albicans, thigmotropism, like galvanotropism, is attenuated by de-
creased Ca”* availability. Deletion of CCH1 or the genes encoding
two other transmembrane Ca®* channels (i.e. Fig. 1 or Mid1—a
mechanosensor channel that activates calcium influx via Cchl),
reduces the sensitivity of hyphal tips to topographical features in
the substratum. These observations suggest that a localized Ca®*
signal modulated by specific plasma-membrane Ca?* channels
relay topologic information to direct tip growth (Brand et al. 2007,
Kumamoto 2008, Brand and Gow 2009). In other fungi, the mech-
anism is still unclear but a change in membrane potential can be
observed at the tip of the N. crassa during thigmotropic responses
(Stephenson et al. 2014).

Electrical currents at the interface with other organisms

Measurements of electrical currents at the interface between
roots of Trifolium repens (L. cv. New Zealand White), Daucus carota
(L. cv. Nantes), and the mycorrhizal fungus Gigaspora margarita
(Berbara et al. 1995) suggested a potential role of electrical sig-
naling in interspecies communication. This mechanism of com-
munication could provide a basis for plant-to-plant interactions
via the connecting mycelium (Gilbert and Johnson 2017). Electri-
cal signals may be produced by plants in response to mechani-
cal damage (Mousavi et al. 2013, Johnson and Gilbert 2015) and
be propagated by the mycelium, making the fungal network act
as a “communication cable” between plants (Johnson and Gilbert
2015). A more recent paper attempted to demonstrate this exper-
imentally using mycorrhizae (Thomas and Cooper 2022). For this,
two plants (Pisum sativum and Cucumis sativus) were linked via a
mycorrhizal network creating a bridge that connected two sep-
arate agar plugs. The plugs were inoculated with a commercial
inoculum containing several species of the Glomus genus (Glomus
intraradices, Glomus aggregatum, Glomus mosseae, and Glomus etuni-
catum). The electrical recording was made by inserting glass mi-
croelectrodes into the stems of the plants. The authors concluded
that electrical signals were reliably conducted across the mycelial
bridges from one plant to the other upon the induction of a wound
response (Thomas and Cooper 2022). The method and the inter-
pretation of the data has generated criticism, mostly on the lack
of evidence of the biological origin of the voltage changes mea-
sured and on the need for a better mechanistic understanding of
the processes that would give rise to these currents (Blatt et al.
2023). Also, it is not possible to rule out the conversion of an elec-
trical signal into a chemical signal in the connecting mycelium.
In addition, the use of an agar-based system can result in the gen-
eration of so-called Donnan potentials. A Donnan potential refers
to the electrical potential difference that arises across a semiper-
meable membrane when charged particles are distributed asym-
metrically due to the presence of impermeable ions (Petsev 2004).
This occurs typically when using agar, which acts as a semiperme-
able membrane in combination with an ionic solution (e.g. culture
media). The gel-like nature of agar enhances this effect, allowing
the development of electrochemical gradients that produce Don-
nan potentials. Moreover, another aspect that was problematic in
the experimental design is the recording of an electrical current
when the mycelium was replaced by a thread, hinting to a physi-
cal phenomenon rather than to a biological one (Blatt et al. 2023).
Nonetheless, despite the criticisms on these experiments, electri-
cal communication is still postulated as one of the mechanisms
for interspecies communication in soils (Hunter 2023).

Another area in which interspecies interactions could be me-
diated by electrical signaling is plant-pathogen interactions. Ex-
periments performed with motile zoospores of the fungus-like
Oomycete Phytophthora palmivora and Arabidopsis thaliana and Med-
icago truncatula showed that the external application of a weak
electric field can alter the attachment of the zoospores to the
roots. These findings and understanding the underlying mecha-
nisms can be important to provide future paths to co-opt those
mechanisms to protect crops (Moratto and Sena 2023, Moratto et
al. 2024). Similar mechanisms could affect the interaction of both
beneficial and pathogenic fungi with plant roots.

Electrical measurements with macroscopic structures

Since 2018, several studies have investigated the production of ac-
tion potential-like electrical currents in mushrooms. These stud-
ies were inspired by work performed on slime molds with the over-
all goal of developing sensing and computing systems based on
filamentous fungi (Adamatzky 2018b). In the first of these studies,
electrical potentials were recorded in fruiting bodies of Pleurotus
djamor. Electrical activity was measured with subdermal needle
electrodes that were inserted into the stalk and the translocation
zone of the cap. Electrical activity (voltage potential) was recorded
with a high-resolution data logger (ADC24, Pico Technology) with
technical features that were touted to reduce noise (twisted cables
for electrodes). The measurements made suggested that fruiting
bodies exhibit spontaneous “spiking” behavior. This spontaneous
behavior corresponded to a slow drift from a base voltage poten-
tial, combined with relatively fast (starting 3 s after stimulation)
oscillations of the potential. In addition, the impact of chemical
and thermal stimulation was investigated. Negative or positive
spikes (i.e. depolarization and hyperpolarization) were detected
upon stimulation (Adamatzky 2018a). In a follow-up study, the
same approach was used to measure electrical activity in Gan-
oderma resinaceum (Adamatzky and Gandia 2021). Further tests
using four fungal species (Omphalotus nidiformis, Flammulina velu-
tipes, S. commune, and Cordyceps militaris) resulted in differences in
the patterns obtained. This prompted the authors to propose that
those differences convey species-specific information and the ex-
istence of a language derived from electrical activity (Adamatzky
2022). Although the methodology applied appeared to be promis-
ing for the advancement of the field, some aspects of the exper-
imental design and the interpretation of the results have been
criticized by some authors (Blatt et al. 2024). A considerable el-
ement of criticism is the fact that part of the electrical activity
likely originates from voltage fluctuations that do not have a bi-
ological origin. For instance, the use of stainless-steel needles is
prone to the recording of Donnan potentials (Blatt et al. 2024). A
similar approach has been used recently to measure electrical re-
sponses in the basidiomycete Pholiota brunnescens during growth
in agar plates over a long period of time (100 days). Electrical po-
tentials were measured extracellularly with electrodes inserted in
the plates and the results were analyzed based on the coloniza-
tion of areas of electrodes. The authors claimed to have recorded
the longest electric oscillation on this system (1 week oscillation
cycle) (Fukasawa et al. 2024). Considering the methodology used
(agar-based cultivation and extracellular electrodes), this study
presents potentially similar experimental flaws as other stud-
ies in which abiotic fluctuations cannot be ruled out (Blatt et al.
2023). A different kind of study in which a fungal mycelial mat
of the ascomycete Curvularia lunata was placed between two elec-
trodes suggested that fungal biomass can serve as a low-speed
data transmission medium (Jones et al. 2024). All these studies at-



test as to the potential for the generation of novel materials with
electric conductive properties using mycelium.

Given the promising results and ease of design proposed to
study mushrooms with needle electrodes (Adamatzky 2022), we
attempted to replicate this experimental system and assessed
some of the caveats indicated by other authors (Blatt et al. 2024).
To do so, we used a related mushroom-producing Basidiomycete,
Pleurotus pulmonarius, because of its fast growth and ease of fruc-
tification. The goal of these experiments was the independent
replication of the method. Accordingly, we used the same record-
ing device (ADC-20 with a ADC20/24 Terminal Board; Pico Tech-
nology Ltd) and subdermal needle electrodes with twisted ca-
bles (Neurodart, spes Medica) (Fig. 2A-D). Additional informa-
tion on the growth conditions of the fungus is presented in the
Supplementary information. We inserted the needles into newly
formed fructifications (Fig. 2E) and, as a control, we placed one of
the differential electrode pairs into uncolonized substrate (Fig. 2F).
Additionally, we cut one of the fructifications (Fig. 2G) and ob-
served the evolution of the voltage potential recording (Fig. 2H
and I). In the fruiting bodies, multiple positive and negative spikes
were observed (blue, pink, and gray lines; ranging from above 50
to up to —300 mV). After detaching one of the fructifications (gray
line), the signal resembled those recorded in the uncolonized sub-
strate (dark violet), which corresponded to a cyclic signal with an
amplitude of around 0.005 Hz (Fig. 2I). This suggested that the
spikes were produced only while the fruiting body was attached
to the fungus. This experiment confirmed the reproducibility of
the recording method for fruiting bodies (Adamatzky 2022). How-
ever, we also observed signal changes due to the opening of the
incubator door, the presence of people walking near the incuba-
tor or even the automatic closing of window shades behind the
incubator in both the fungus and the control (i.e. positive and neg-
ative spike recorded at 18 and 42 h). This agrees with some of the
criticisms of the method, in particular regarding the potential for
recording of noise. Thus, a more controlled setting, such as a Fara-
day cage, is essential to improving this approach.

Another aspect that needs to be considered in future studies for
the measurement of electrical currents with macroscopic struc-
tures, at the interface of organisms, or even when using extracel-
lular electrodes in cultures growing on solid media is the impor-
tance of the positioning of the electrodes and their reference. The
electrodes used in these studies can be considered as “proxim-
ity” electrodes that record electrical field potentials. Those corre-
spond to voltage that can arise passively from either biological (i.e.
the fungus or plants) and nonbiological sources (e.g. movement of
ions on a matrix), and the precise origin cannot be distinguished
between these sources (Blatt et al. 2023). Moreover, the interpre-
tation of the recorded data as action potential-like signals based
on extracellular measurements of changes in voltage can be mis-
leading. Action potentials are transmembrane potentials arising
between the intracellular and extracellular space, and are gener-
ally measured with microelectrodes placed inside living cells. In-
stead, the use of surface and extracellular electrodes to record lo-
cal voltages when placed close to or in contact with excitable cells,
rather reflects synchronous behavior of multiple cells (Buzsaki et
al. 2012, Blatt et al. 2024). Therefore, validating the measurements
using intracellular electrodes, improving the analysis of the sig-
nal, or identifying methods to reduce the nonbiological noise is
important to advance in this area.

Ion channels in fungi

As indicated previously, resting membrane potentials are main-
tained actively in the cell by controlling the movement of ions
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across the membrane with the help of selective channels and/or
ion pumps (Martinac et al. 2008). These transmembrane proteins
allow the selective movement of ions (for instance, Na*, Ca®*, and
K*) across the membrane, but can also have functions other than
electrical signaling (Catterall et al. 2017).

Early studies in fungal electrical signaling postulated the in-
volvement of proton pumps (H*) and other ion channels (Ca®* and
Cl7) (Slayman et al. 1976, Harold et al. 1985, Gow and Morris 1995).
Spontaneous action potential-like behavior in Neurospora was pro-
posed to be due to an electrogenic H* pump, or a change in the
selectivity of the membrane to ions. From the various ions that
were evaluated in this early study, H" and Cl~ were identified as
the most likely ions responsible for carrying the inward current
during action potential firings (Slayman et al. 1976). Moreover, the
response of spontaneous action potential-like firing activity in A.
bulbosa and P. ostreatus to current injection differed from the re-
sponse in classical animal models (Olsson and Hansson 1995). In
these two fungi, the injection of negative currents increased the
amplitude of the signals, whereas injection of negative currents
inhibits the activity of neurons. This suggested that the ions and
ion channels involved in the generation and maintenance of ac-
tion potentials in fungi are different from those in classical ani-
mal models (Olsson and Hansson 1995). In contrast, and as indi-
cated previously, galvanotropism and thigmotropism in C. albicans
appear to be regulated by the movement of Ca?* via the voltage-
gated channel Cchl (Brand et al. 2007). More recently, a study in
A. nidulans showed Ca?* signaling intracellularly in response to a
localized stress. The movement of Ca?* was highly localized and
caused a wave of voltage measurements with variable frequency
(Itani et al. 2023).

Different types of ion and voltage-gated channels have been
described in fungi based mainly on the study of yeasts. How-
ever, more recently, specific families of these channels have also
been identified in filamentous fungi (Houdinet et al. 2023), in-
cluding voltage-gated proton channels that displayed shared fea-
tures to animal counterparts, but that were sufficiently differ-
ent to confer specific functional adaptations unique to filamen-
tous fungi (e.g. voltage range of activation or pH sensitivity) (Zhao
and Tombola 2021). Moreover, the analysis of whole-genome se-
quencing projects allowed to identify genes likely to encode ho-
mologues of K*, Ca?*, transient receptor potential (Trp), and mito-
chondrial Ca?* uniporter channels (Prole and Taylor 2012). To ex-
pand this knowledge beyond pathogens, we performed a homol-
ogy search for known ion and voltage-gated channels in available
fungal proteomes based on human voltage-gated channel sub-
units (additional information is provided as the Supplementary
information). The distribution of the hits and their presence in
different fungal clades were analyzed (Fig. 3). The results of this
search indicated the presence of putative voltage-gated channels
in response to multiple ions (Ca®*, Cl~, K*, Na*, and H*) and
the signal molecule glutamate. Most of the identified channels
were present in all eight fungal phyla. However, the different sub-
units of the voltage-dependent K+ channel KCN were less rep-
resented in Ascomycota, despite the fact that most of the pro-
teomes screened corresponded to this phylum (1283 out of 1942
proteomes screened). In contrast, those were among the only
type of channels found in Cryptomycota (three proteomes avail-
able). In Basidiomycota and Blastocladiomycota (390 and 2 pro-
teomes screened, respectively), all the types of channels were de-
tected, but some subunits were more common than others. In Mu-
coromycota and Chrytridiomycota, (84 and 23 proteomes, respec-
tively), C1~ channels were rare (5-11 and 1, respectively). In Ol-
pidiomycota, for which a single proteome was available, only the
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Figure 2. Measurement of voltage fluctuations with needle electrodes inserted in fruiting bodies of the agaricomycete P. pulmonarius: (A) Scheme
illustrating the insertion of the needle electrode into the foot of the P. pulmonarius fructification. (B) Images of the open incubator
(POL-EKO-APARATURA sp.j, type: st 3C SMART) in which the experiments were performed; an aquarium lamp (Dennerle nanolight, 11 W) was located
at the top. A humidifier (Stylies Alaze SC21011) and a recipient with moist vermiculite were placed at the bottom to maintain humidity. (C) ADC20/24
Terminal Board (Pico Technology Ltd) used to connect the cables to the datalogger. (D) Image of the data logger ADC-20 (Pico Technology Ltd) with four
pairs of differential neurological subdermal needles with twisted cables (Neurodart, spes Medica). Needles were inserted through polystyrene pieces to
ensure that the needles were located at a fixed distance (1 cm from one another). (E) Needle electrodes attached to three different fructifications of
one fructifying bag of P. pulmonarius. (F) One pair of needle electrodes was inserted in the substrate without fungus as a control. (G) Fructification with
inserted electrodes cut from the fructifying bag (1 day after insertion of the electrodes). (H) Raw signal recorded on the Picolog 6 software (Pico
Technology Ldt). The red box represents the zoomed area shown in (I), in which we observed the effect of cutting off the fructification shown in (G). (I)
Magnification of the red box from (H). Comparison of a signal for a fructification before and after cutting. Lines in blue, pink, and gray correspond to
three different fructifications, while the uncolonized control corresponds to a dark violet line visible after the cut of the fruiting body in (G). After the
cut, it is possible to observe the signal from the cut fruiting body (gray) resembling that of substrate control (dark violet).

receptor for glutamate was detected. Finally, in Zoopagomycota,
K* channels were more commonly found (details provided in the
Supplementary information).

The homology search performed here suggests the widespread
presence of potential ion- and voltage-gated channels in differ-
ent fungal clades. However, ultimately, this type of analysis needs
to be validated by structural modeling and functional character-
ization experiments to confirm their role on electrical signaling.
The characterization of fungus-specific K* channels is an exam-
ple of this type of validation (Houdinet et al. 2023). These channels
were initially identified using the patch-clamp method in fun-
gal spheroplasts and protoplasts (Gustin et al. 1986, Bertl et al.
1993). This led to the description of the ScTOK1, the first mem-
ber of a new family of K* channels to be described in S. cerevisiae
(Houdinet et al. 2023). This channel was shown to elicit mainly
outwardly rectifying K* currents upon membrane depolarization
in yeast and when expressed in Xenopus laevis oocytes. This recti-
fying function is not directly involved in generating action poten-
tials. Instead, it helps maintain ionic balance in yeast cells. (Gustin
et al. 1986, Zhou et al. 1991, 1995, Bertl et al. 1993, Ketchum et al.
1995, Lesage et al. 1996, Loukin et al. 1997). Similar experimental
studies would strongly contribute to the field.

Evaluation of innovative recording techniques
and potential improvements

In this second part of the review, we will present the evaluation
of innovative recording methods that we explored to investigate

electrical signaling in fungi. The goal was to expose experimental
caveats that we have encountered, as well as present new meth-
ods that have the potential to provide novel evidence for electrical
signaling in fungi. We hope this will promote future studies in the
area and avoid costly mistakes by other researchers aiming to en-
ter the field.

Resistivity measurements

Studies with giant squid neurons showed a decrease in resistance,
and thus an increase in conductivity, when neurons fire action po-
tentials (Cole and Curtis 1939). Theoretical models of action po-
tentials, such as the Hodgkin-Huxley model, rely on changes in
ion conductance (which inversely affects resistivity) across the
cell membrane to describe how action potentials are generated
and propagated (Hausser 2000). Although animal neurons are of-
ten used as a model, action potentials in other organisms like
plants show the same 3-fold defining phases: depolarization, re-
polarization, and hyperpolarization. In plants, such as Nitella flex-
ilis, a decrease in resistivity has also been measured during action
potential events (Cole and Curtis 1938). This suggest that electri-
cal signaling in biological systems can be often correlated with
changes in resistivity. Accordingly, one way to assess the existence
of action potentials in fungi is to assess a change in resistivity
in the mycelium in response to stimuli. To test this, we used Mi-
bots (Imina technology), which are piezo-driven micromanipula-
tors that support conductivity-measurements with precise con-
tact needle micropositioning under a camera or a microscope. The
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Figure 3. Distribution of PSI-BLAST hits for homologues to voltage-gated ion channels in different fungal clades. The total number of PSI-BLAST hits
with e-values < le-5 and the number of hits per phylum for each gene was calculated and is displayed as unstacked bar plots. The number of hits per

phylum was variable.

electrical measurements were performed using a Keithley 2400
source meter for the recording of current-voltage data. Three dif-
ferent fungi were tested: Fusarium oxysporum, C. cinerea, and P. os-
treatus (Fig. 4). Conductivity was measured using the piezoelectric
actuators connected in the Mibots (Fig. 4A and B). These piezoelec-
tric actuators were used to measure resistance on indium tin ox-
ide (ITO) stripes on uninoculated glass slides (Fig. 4C) or on slides
on which the fungi were grown (Fig. 4D). Resistance can be mea-
sured by placing the actuators on the same stripe at variable dis-
tances (e.g. Fig. 4C). In the uninoculated glass slide covered with
ITO stripes, the resistance was between 45 and 128 ohms, depend-
ing on the distance at which the actuators were placed (distance
in mm indicated in Fig. 4E). In contrast, in the glass slides colo-
nized by the three fungi, the presence of the mycelium resulted in
an increase in resistance (Fig. 4E). In the case of the mycelium of F.
oxysporum, a resistance value could be obtained in a variable num-
ber of stripes (seven ITO stripes per slide as shown in Fig. 4C) in
four independent tests. In the case of slides colonized by C. cinerea
and P. ostreatus, the resistance was so high that measurements
could only be obtained in the last stripe that contained the low-
est biomass (resistance above 5 x 108 ohms; Fig. 4F). We ascribed
the increase in resistance to the growth of the mycelium on the
ITO stripes and the resulting insulation from the production of
hydrophobins, as has been suggested previously (Gow and Mor-
ris 1995). Therefore, this method, which was easy to implement,
could be used in the future to evaluate the effect of components
of the cell wall on insulation and to validate the role of cell wall

components on preventing ion leakage (Morell and Quarles 1999).
For this, future experiments could employ mutants devoid of a cell
wall such as the N. crassa slime mutant (Levina et al. 2002) or di-
verse Penicillium expansum mutant strains that lack hydrophobins
(Luciano-Rosario et al. 2022). The use of such mutants should cir-
cumvent the measurement impairments thought to be caused by
the cell wall and prove its role as an insulator. Mycelial growth in
the slime mutant can be challenging, but a combination of this
type of recording method with the use of, for instance, microflu-
idic devices to provide structural support could help to circum-
vent this issue.

Multielectrode arrays

Studies in human neuronal networks have led to recent technical
advancements that allow the extracellular recording of voltage
fluctuations. The use of a similar approach for mycelial networks
could confirm previous results from vibrating microelectrodes
where external currents were measured around the apex (Stump
et al. 1980, Horwitz et al. 1984). We attempted this by using a
high-density multielectrode array (MEA) from 3Brain (3Brain.com,
Switzerland) developed to record electrical activity of neuronal
networks in vitro. The MEA microchip consists of an array of more
than 4000 electrodes of micrometer size (20 x 20 um? sensing
area, 80 um pitch) that register voltage fluctuations with a sen-
sitivity of few tens of pV (Fig. 5A and B). The voltage fluctuations
result from extracellular ionic flows occurring when ion channels
and transporters of the cell membrane open. The signals collected
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Figure 4. Conductivity measurement of fungal mycelia with MiBots (Imina technologies): for this experiment, we tested F. oxysporum, P. ostreatus, and C.
cinerea. The three fungi were cultivated on malt agar medium, where glass slides covered by stripes of ITO were placed next to the inoculum. Once the
fungus had grown onto the slide, it was placed onto the MiBots arena to conduct measurements. (A) Camera system mounted in order to visualize the
probes for more accurate measurements with the MiBots piezoelectric actuators. (B) Example of a measurement on a slide colonized by F. oxysporum
hyphae. (C) Details of ITO-covered glass slide. The ITO stripes are transparent and therefore, a mask is placed underneath to indicate their position
and to guide the measurements. The position of the ITO stripes corresponds to the middle lines in the three-line marks highlighted by the numbers
1-7. The slide is about 2.5 cm x 2.5 cm, with the stripes being separated by around 2 mm. In the top left part, there is a rectangular area covered by
ITO that can be used as a positive control. In this example, the distance between the electrode probes, positioned using the piezoelectric actuators,
corresponds to 12 mm. (D) Example of measurement on stripe 7 on a slide colonized by P. ostreatus. (E) Plotting of the resistance measurements
(logarithmic Ohm—for the detailed measurements, please see the Supplementary information). The controls correspond to measurements in an
uninoculated slide on stripe 1 with the electrodes positioned at different distances along the stripe (2 mm, 4 mm, 6 mm, 8 mm, and 12 mm,
respectively). For E oxysporum, four individual slides were measured and only the values on the stripes that could be measured are reported in
different stripes. For C. cinerea and P. ostreatus, recordings were only possible on stripe 7.
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Figure 5. Measuring voltage fluctuations in a mycelial network using a high-density MEA from 3Brain. (A) MEA chip used (~1 cm?). The microchip
(gold square in the middle) is surrounded by a plastic container acting as a reservoir for medium and organism growth. (B) Close-up image of the
microchip chamber. The chip contains 4096 electrodes for measuring electrical activity. On the sides, the two large gold electrodes (outside the chip)
act as references for the differential measurement. (C) Image showing the growth of F oxysporum inoculated using the spore drop method in
Dulbecco’s modified eagle medium (DMEM; GiBCO) liquid medium. Image taken 2 days postinoculation. (D) Fusarium oxysporum at 3 days
postinoculation (before measurements). For the measurements, the chamber (B) was flooded with medium (required for the measurements). (E)
Magnified image showing F. oxysporum hyphae that have grown from the point of inoculation and are attached to the electrodes.

simultaneously by each of the thousands of electrodes can be
visualized as functional activity images, allowing for tracking of
electrical impulses propagating inside an electrogenic tissue with
micrometer resolution. Multiple tests for recording the propaga-
tion of electrical impulses in a mycelial network were conducted
using F. oxysporum. First, the fungus was inoculated by placing a
small agar plug on the surface of liquid medium overlying the
electrodes. This method did not yield any results because the fun-
gus grew on the surface of the medium at the air-medium inter-
face and never made physical contact with the electrodes. There-
fore, we developed a second inoculation method (Buffi et al. 2023),
to be able to place and cultivate the fungus directly onto the chip’s
surface (Fig. 5C-E). This second approach resulted in a record-
ing. An oscillation signal in the range of £ 50 pV was recorded.
However, the signal remained constant after induction with a cal-
cium ionophore, which is known to induce a physiological reac-
tion in F oxysporum (Hoshino et al. 1991). Also, killing the fun-
gus with the antifungal agent cycloheximide did not affect the
signal. Upon discussion with the chip developers, it became evi-
dent that the signal recorded corresponded to background noise.
MEA chips were originally designed to measure relatively high fre-

quency signals (from 5-10 to 2-3k Hz), while in most of the ex-
isting literature, fungal signals have temporal dynamics of tens
of seconds up to hours resulting in a signal spectral frequency
in the order of 0.0003-0.1 Hz. This major difference makes the
recording using the commercial chip design inappropriate and
would require major modifications of the design and the analy-
sis software to be suitable. Nevertheless, this type of electrode ar-
ray could provide a way to measure the propagation of an elec-
trical signal within the complex spatial structure of a growing
mycelium.

Visualization of membrane potentials using dyes

The last method tested here aimed to visualize changes in mem-
brane potential in fungal hyphae by coupling the use of volt-
age sensitive dyes with fluorescence microscopy. Voltage sensitive
dyes are molecules that bind to the cell membrane and whose flu-
orescence changes when a membrane potential fluctuation is de-
tected (Fig. 6A). They have been mainly used for imaging of com-
plex neuronal network behaviors (Ebner and Chen 1995, Chemla
and Chavane 2010, Adams and Levin 2012, Kulkarni and Miller
2017). Thioflavin T (ThT) is a fluorescent dye usually used for
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Figure 6. Visualization of membrane potential changes with the voltage sensitive dye ThT. (A) Scheme representing the mechanism behind the
visualization of membrane potential using ThT. ThT is positively charged but it does not cross the fungal membrane. If the inner cell is negatively
charged (e.g. efflux of positively charged ions), ThT will concentrate on the surface of the cell and fluorescence can then be detected (image in the
bottom of the scheme). This can be the result of changes in the movement of specific ions across the membrane. (B) Fusarium oxysporum growing in
Vogel-N-Medium in a 24-well cell culture plate (Corning incorporated). ThT was added in a final concentration of 30 pM, the plate was covered with
dark paper and mixed gently for half an hour before performing imaging on an inverted microscope (EVOS FL imaging system, Invitrogen) with a DAPI
filter. (C) Example of a picture overlying a DAPI image with a bright field image showing the inconsistent staining with ThT. Here part of the mycelium
and spores of F. oxysporum were stained while others were not. Furthermore, the issue of imaging superposed stained hyphae can be

observed.

staining amyloid fibrils (Biancalana and Koide 2010) that was pre-
viously used as a membrane potential dye for bacteria (Prindle
et al. 2015). ThT does not cross the plasma membrane. The dye
is positively charged and accumulates close to the membrane in
response to changes in membrane potential (for instance if the
plasma membrane becomes negatively charged). This makes ThT
a good candidate for slow membrane potential changes. To test

this, F oxysporum was cultivated in liquid medium to which ThT
was added at a final concentration of 30 uM (Fig. 6B). In the mi-
croscopic images, an uneven staining along hyphae and on spores
was observed (Fig. 6C). Moreover, it was very difficult to distin-
guish between changes in staining resulting from variations in
membrane potential or simply diffusion of the dye. Therefore, op-
timization of the set-up is required including additional controls



to test photobleaching or the comparison of alive versus dead hy-
phae. Combining fungal staining and cultivation on microfluidic
devices would help confine single hyphae, thus eliminating issues
related to hyphal superposition. Microfluidic devices have been
used in the past in order to spatially separate single hyphae and
observe different physiological interactions (Stanley et al. 2016).
Microfluidic devices have emerged particularly valuable tools for
studying hyphal growth dynamics, spore germination, and fungal
network formation with spatial and temporal resolution (Richter
et al. 2022). Although the compartments of the microfluidic de-
vices are usually saturated with liquid medium, potentially im-
pairing measurements, the use of the devices without fluid is also
possible (Gimeno et al. 2021). Alternatively, the use of other meth-
ods for visualizing the hyphal network such as the drop method
(Buffi et al. 2023) could be another possible solution.

Future directions

The challenges encountered so far underscore the complexity of
accurately recording electrical signals in fungi. A recurrent chal-
lenge in the experimental systems described and evaluated above
is the difficulty in effectively measuring electrical signals intra-
or extracellularly due to the fungal cell wall. This obstacle is not
unique to fungi; similar issues were encountered in plant stud-
ies. For intracellular measurements, this issue was partially over-
come by using aphid stylets as probes for plants (Tjallingii 1985).
However, translating this approach to fungi (for instance, using
nematode stylets) could pose significant technical challenges due
to the small size of individual hyphae. The use of internal mi-
croelectrodes in fungi has raised concerns about altering fun-
gal behavior, such as causing membrane leakage, but new meth-
ods provide alternatives to those. For instance, the injection of
nanopebbles coupled with a voltage sensitive dye (Koo Lee and
Kopelman 2012) could be used to measure intracellular ionic cur-
rents. Nanopebbles are nanoparticles composed of an external in-
ert coating and an active inner sensor that can be visualized by
microscopy without interfering with the cell functioning. The in-
jection of nanopebbles in fungal mycelia could be achieved us-
ing a microfluidic probe connected to an atomic force microscope
(FluidFM). This approach has been used for instance to inject bac-
teria into fungal cells (Guillaume-Gentil et al. 2022, Giger et al.
2024), and could be used to inject the nanopebbles or to create
ionic fluxes and investigate the propagation of an electrical sig-
nal in the mycelial network. Another approach involves the ex-
pression of intracellular reporters for specific ions such as Ca’*.
Indeed, the expression of genetically encoded Ca?* indicators has
been shown for different unicellular and multicellular fungi, but
it is still challenging to achieve and optimize (Carb¢ et al. 2017,
Barykina et al. 2020, Kim et al. 2021). The potential application of
this technology for signaling in fungal composite materials has
been recently reviewed elsewhere (Schyck et al. 2024).

Future research might also benefit from exploring innovative
approaches, such as genetically encoded voltage indicators (GEVI)
(Yang and St-Pierre 2016). Such fluorescent proteins could pro-
vide a less invasive way of tracking changes in membrane po-
tential, similar to techniques used in neuronal studies. For this,
identifying good models is crucial. For instance, C. cinerea (a sapro-
trophic fungus), which has served as a model organism for ho-
mobasidiomycete fungi, is a good candidate to study the effect
of electrical signaling during fruiting body formation (Navarro-
Gonzélez et al. 2011). Moreover, this fungus is amenable to ge-
netic manipulation and it has been modified to express fluores-
cent metabolic reporters in response to biotic stress like nematode
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attacks (Schmieder et al. 2019). By expressing voltage-sensitive
fluorescent proteins in C. cinerea and coupling this with fluores-
cently marked analogues (e.g. 2-NBDG glucose or labeled phos-
phorus and carbon), electrical signaling could be coupled to phys-
iological and behavioral responses. Such an approach could reveal
how fungi coordinate mycelial responses to biological (e.g. attacks
by mycoparasitic fungi or nematodes) or abiotic (e.g. fruiting body
formation in response to electrical signals) stimuli. Furthermore,
finding a good model organism could help further improve the use
of GEVI in complex networks with low voltage changes.

Conclusion

Demonstrating the biological origin of electrical signals and im-
proving our understanding of the mechanisms and roles of elec-
trical communication in fungi has implications reaching beyond
mycology. For instance, parallels and differences have been high-
lighted as part of the polar growth and intracellular communica-
tion of neurons and hyphae, in which mutual progress can lead,
for instance, to a better understanding of mechanisms of neural
diseases. Reciprocally, neurons could serve as a model to study
tip-to-nucleus communication in hyphae (Etxebeste and Espeso
2016). In ecology, it could reshape our understanding of fungal
physiology and interactions with other organisms. This has im-
plications in diverse areas and can provide new ways to tackle
the emerging problem of fungal diseases in both agriculture and
medicine (Rickerts 2019, Fisher et al. 2022, The Lancet Infectious
Diseases 2023). Moreover, in the field of biotechnology, leveraging
fungal electrical properties could pave the way for innovative ap-
plications, such as the use of fungi in biosensors or as components
in biological computing systems (Adamatzky 2018b).
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